Così la vespa orientalis utilizza l’energia solare

Tratto dall’originale link : http://www.nextme.it/scienza/natura-e-ambiente/1302-cosi-le-vespe-producono-energia-solare

vespa_orientalis

Un gruppo di scienziati di Tel Aviv ha scoperto che una particolare specie di vespepresenta un apparato simile alle celle solariper la produzione di energia. La vespa in questione è un imenottero della famiglia delle Vespidae, simile al calabrone, che può raggiungere le dimensioni di circa tre centimetri, precisamente identificata con il nome di ‘vespa orientalis’ (Vespa orientalis Linnaeus).

È diffusa soprattutto nel sud est dell’Europa e nel Medio Oriente; in Italia è presente nelle regioni meridionali e in Sicilia e nidifica solitamente all’interno di cavità ricavate nei muri e negli alberi, oppure direttamente nel terreno. Osservandone l’attività giornaliera, che consiste soprattutto nel lavoro presso la propria tana, gli scienziati hanno appurato che questo tipo di vespe lavora molto anche durante l’inverno, e che la loro attività è molto più frenetica durante le ore centrali della giornata.

Pare che il numero di vespe che entrano ed escono dalla tana, infatti, sia doppio quando il sole è alto, esattamente al contrario di ciò che succede con altri insetti simili. Ipotizzando una correlazione tra la maggiore insolazione e la maggiore attività, le osservazioni e gli esperimenti si sono indirizzati nello studio dei processi metabolici.

I ricercatori israeliani non sono nuovi a questo tipo di scoperte che riguardano le vespe: alcuni importanti studi sia sul comportamento sociale che sulla biologia di questi insetti, sono stati pubblicati dal 2004 al 2007 e costituiscono la logica premessa a quanto reso noto solo pochi giorni fa da Jacob Ishay, professore alla Facoltà di Medicina dell’università di Tel Aviv, durante un’intervista alla ‘BBC’.

Le vespe, come se fossero dei veri pannelli solari, utilizzano due zone corporee che si trovano sull’esoscheletro, (detto anche cuticola, che altro non è che un rivestimento esterno che protegge l’animale) una di colore marrone e l’altra gialla. Per molto tempo si è pensato che questa doppia colorazione avesse fondamentalmente una funzione difensiva rispetto agli altri animali. In realtà, secondo Ishay, l’esoscheletro ha delle proprietà molto più interessanti: la parte marrone contiene melanina e la parte gialla contiene xantopterina, che è il pigmento giallo presente in molti animali, specialmente nelle farfalle e nelle vespe, ma presente anche nell’urina dei mammiferi.

Ebbene, le due superfici corporee diversamente pigmentate e presenti sul corpo della vespa orientalis, sono capaci di catturare il 99 per cento dell’energia solare da cui sono colpite. Le radiazioni sono assorbite dalla cuticola attraverso i pigmenti e trasformate in energia.

È da molti anni che siamo a conoscenza del fatto che le piante utilizzano l’energia del sole, ma “è’ la prima volta che si scopre che una creatura utilizza il sole come forma diretta di energia”, ha detto Ishay, il quale ha aggiunto che dalle applicazioni dello studio di questo animale “potremmo imparare a costruire celle solari molto efficienti”.

Pasquale Veltri

Tratto dall’originale link : http://www.nextme.it/scienza/natura-e-ambiente/1302-cosi-le-vespe-producono-energia-solare

 

Osservazioni

E’ interessante notare come le zone che sono interessate al pigmento, che attira l’energia solare, siano quelle identificate dalla seguente immagine…

E cioè cervello (5) e cuore (14)

Tratto da link : http://www.mielidautore.it/alveare-morfologia.htm

Schema anatomico di un insetto generico

Schema anatomico di un insetto generico A– Capo; B– Torace; C– Addome

 

1 antenna;
2 ocello inferiore;
3 ocello superiore;
4 occhio composito;
5 cerebro (cervello);
6 protorace;
7 arteria dorsale (aorta);
8 apparato tracheale (trachee + spiracoli tracheali);
9 mesotorace;
10 metatorace;
11 ali (primo paio);
12 ali (secondo paio);
13 mesenteron (tratto medio del tubo digerente);
14 cuore;
15 ovario;
16 proctodeo (tratto finale del tubo digerente);
17 ano;
18 genitali;
19 catena gangliare ventrale;
20 tubi Malpighiani;
21 ultimo tarsomero;
22 unghie del pretarso;
23 tarso + pretarso;
24 tibia;
25 femore;
26 trocantere;
27 stomodeo (prima parte del tubo digerente);
28 ganglio toracico;
29 coxa;
30 ghiandola salivare;
31 gnatocerebro;
32 apparato boccale.



Antenne (1)
Nell’ape, ciascuna antenna (breve, filiforme e genicolata) è costituita da un articolo basale, o scapo, seguito da un articolo più breve detto pedicello e da una porzione distale, o flagello, quest’ultimo composto da 11 articoli nelle femmine e di 12 nei maschi. Il flagello contiene numerose fossette olfattive che conferiscono all’ape un acuto senso dell’olfatto; esse sono in numero di 1600 nell’antenna della regina, 2400 in quella di un’operaia e 1000 in quella di un fuco, e sono frammiste a numerosi peli tattili, in numero di circa 7000 sull’antenna dell’operaia e di 1000 su quella del fuco. Lo scapo si articola con il capo entro una fossetta, detta torulo, attraverso la quale giungono fino all’apice antennale liquidi e tessuti di provenienza interna (nervi, trachee, emolinfa,ecc.).

Apparato boccale (32)
L’apparato boccale tipico degli insetti era in origine masticatore, quale si ritrova ancora negli Ortotteri, Coleotteri, etc. Gli adattamenti dovuti ai regimi alimentari hanno però determinato negli insetti radicali trasformazioni. Nell’ape, i pezzi originari si sono trasformati costituendo un apparato boccale lambente e succhiante. Il complesso maxillo-facciale si piega tra cardini e stipiti, e si sposta un po’ all’indietro sotto il cranio, costituendo un canale temporaneo per suggere il nettare. L’organo aspirante, lungo e flessibile, è formato dalle glosse labiali; per mezzo di questo le api raccolgono il nettare e manipolano il miele nell’arnia. I lati di questa ligula sono ripiegati verso l’interno e verso il basso, fino quasi ad incontrarsi, per formare un tubo racchiuso dalle mascelle e dai palpi labiali.Il labium (labbro inferiore) è provvisto di palpi assai sviluppati e 4-articolati (con il primo articolo molto allungato e piuttosto largo, il secondo più corto, gli ultimi molto brevi) e di una ligula (o glossa, o lingua) lunga (in estensione misura 5,5-7 mm), cilindrica, densamente pelosa, flessibile e contrattile, percorsa da un solco ventrale (canale ligulare) e terminante con un’espansione a cucchiaio (labello o flabello). Le galee mascellari ed i palpi labiali, accostandosi alla ligula formano un tubo, o proboscide, delimitante un canale di suzione che permette all’ape di succhiare il nettare liquido mediante l’azione aspirante del cibario (porzione della cavità boccale anteriore alla faringe) e della faringe (pompa cibario-faringea), convogliandolo nella grande ingluvie (o borsa o borsetta melaria, o stomaco mellifico), un sacco a parete estensibile costituito da una dilatazione dell’esofago, dove il nettare subisce una prima trasformazione chimico-fisica che lo converte in miele.
Alla base della faccia interna delle mandibole sboccano 2 ghiandole mandibolari; nelle operaie esse producono una frazione della gelatina, o pappa reale, e sono funzionali in relazione alla lavorazione della cera; nei fuchi sono ridotte ad una piccola masserella; nella regina sono molto sviluppate e producono il feromone di coesione della colonia (miscela degli acidi 9-ossodeca-trans-2-dnoico e 9-idrossi-2-dnoico che ha la funzione di far identificare la regina come tale all’interno e fuori dell’alveare, di inibire lo sviluppo dei loro ovarìoli, e di impedire la costruzione di celle reali).
Quando il livello di questo feromone nella colonia scende al disotto di un certo valore (per la morte o l’invecchiamento della regina, o per un eccessivo aumento della popolazione), l’inibizione cessa e le operaie cominciano a costruire celle reali in cui allevare nuove regine o, eccezionalmente, sviluppano ovarioli funzionali (operaie ovificatrici) e depongono uova partenogenetiche maschili. Sulla superficie dorsale del labbro inferiore sboccano le ghiandole labiali, o salivari, presenti in tutte e tre le caste, e costituite da due distinti sistemi ghiandolari: le ghiandole postcerebrali, situate contro la parete posteriore del capo, e le ghiandole toraciche, situate nella porzione ventrale anteriore del torace; il loro secreto ha funzioni non ancora del tutto chiarite, una della quali è probabilmente quella di sciogliere le sostanze zuccherine presenti nell’alimento facilitandone così la suzione.

Zampe (21-22-23-24-25)
La zampa di Apis mellifica porta un tarso 5-articolato con pretarso con 2 unghie ed arolio. Nella zampa anteriore (protoracica), la tibia reca sul margine anteriore della superficie interna una frangia di peli corti e rigidi che costituiscono la spazzola degli occhi , usata dall’ape per pulire gli occhi composti, e, inserita sul suo margine distale esterno, una spina mobile piatta detta sperone o raschiatoio semicircolare provvisto di spine disposte circolarmente a pettine, che si sviluppa sul margine interno del primo articolo del tarso. Quando la zampa si piega, lo sperone chiude l’apertura dell’incavo delimitando, in tal modo, un foro attraverso il quale l’ape fa passare l’antenna per pulirla e liberarla dalla polvere e dai granuli di polline. Lunghi peli distribuiti sul basitarso formano la spazzola del polline che l’ape usa per raccogliere i granuli pollinici dalle parti anteriori del corpo: incrociando le zampe l’ape spinge il polline dentro la cestella aiutandosi con la spazzola del polline situata sul primo articolo del tarso, che è particolarmente sviluppata. Nella zampa media (o mesotoracica), il tarso appiattito è provvisto anch’esso di una spazzola del polline per asportare i granuli pollinici dalle zampe anteriori e dal corpo; e l’estremità distale interna della tibia reca uno sperone o spina tibiale che l’ape usa come leva per staccare le lamelle di cera, secrete dalle ghiandole situate nella regione sternale dell’addome, e le pallottoline di polline dalle cestelle quando, giunta nell’alveare, deve scaricarle e disporle nelle apposite celle, come dispositivo di pulizia per liberare dai corpi estranei le ali e gli spiracoli tracheali,ecc. Nella zampa posteriore (o metatoracica), la larga tibia presenta esternamente una lieve concavità marginata da forti e lunghi peli incurvati, che forma la cestella (o cestello, o corbella, o corbicula) dove l’ape accumula il polline per trasportarlo nell’alveare. In corrispondenza della articolazione tibio-tarsale, il margine distale libero della tibia, provvisto di un pettine o spazzola della cera, formato da numerose grosse spine, ed il margine prossimale libero del tarso, provvisto di peli e ricurvo a forma di becco (sperone tarsale o auricola), formano una pinza tibio-tarsale che serve per raccogliere le lamelle di cera dall’addome. La faccia esterna del basitarso è provvista di peli collettori per raccogliere i granuli pollinici dalle parti posteriori del corpo e la sua faccia interna reca una decina di serie trasversali di spine brevi e robuste, rivolte verso il basso, che costituiscono la spazzola del polline o scopa.

Torace (B)
Nell’ape si ha un grande sviluppo del mesotorace, suddiviso in scleriti secondari e col noto distinto in una porzione anteriore prescuto-scutale ed in una posteriore scutello-postscutellare. Modesto sviluppo del protorace. Il primo urite ha perduto la regione sternale ed è venuto ad accollarsi al metanoto, entrando a far parte integrante del torace (epinoto o propodeo), cosicché il torace medesimo, veduto dorsalmente, appare costituito da 4 anzicchè 3 regioni tergali.

Addome (C)
L’addome dell’ape è costituito da 10 segmenti (o uriti, da urà, coda), dei quali, però, solo alcuni morfologici e visibili esternamente (col decimo comunemente ridotto o membranaceo, o fuso col nono). Il primo urotergo e le sue aree laterali si sono integrati col torace formando, in questo tagma, un quarto tergo che ha preso il nome di propodeo, o epinoto. Conseguentemente la parte rimanente dell’addome, dal secondo urite in dietro (detta gastro) si collega col propodeo mediante un peduncolo detto peziolo. Il VII urosterno funziona sempre da lamina sottogenitale. VIII e IX urite non risultano distinti quali scleriti a sé stanti. IV e VII prosterno ciascuno con due larghe aree ovoidali (specchi) attraverso i quali passa la cera fluida attraversando la loro sottile cuticola. La ghiandola di Nassonoff è sita sotto la membrana intersegmentale, tra il VI ed il VII urotergo e sbocca nella parte anteriore di quest’ ultimo.

Pungiglione
All’estremità distale del corpo dell’ape è presente l’aculeo, o pungiglione, un ovopositore modificato di cui sono provviste solo le operaie e la regina. È formato da uno stilo lungo e sottile che nella parte prossimale si allarga in un bulbo cavo. Lo stilo è formato da una guaina a doccia che si prolunga con il bulbo ed abbraccia due stiletti slanciati e seghettati per la presenza di una decina di denti rivolti all’indietro. Gli stiletti e la guaina delimitano un canale che si apre alla estremità dello stilo, ai lati del quale si trovano le due valve dell’aculeo dotate di numerose piccole spine e di sensilli. L’apparato del pungiglione comprende: – una guaina dorsale cava; – uno stilo o dardo, costituito da due stiletti, o aghi, o lamelle, ciascuno dei quali è provvisto di circa 9 dentelli con la punta rivolta all’indietro che trattengono lo stilo nella ferita (quando questa è inferta in tessuti elastici e molli, come quelli dei mammiferi), ed è percorso ventralmente da un solco che permette loro di scorrere l’uno sull’altro sotto l’azione dei muscoli situati alla loro base interna e di penetrare così alternativamente e sempre più profondamente nei tessuti della vittima; – 2 processi digitiformi rivolti all’indietro quando l’aculeo è protratto e disposti ai suoi lati quando è retratto, i quali sono chiamati appendici palpiformi o palpi dell’aculeo, poiché sono considerati come organi di senso che comunicano all’ape quando l’addome è a contatto con il corpo in cui essa vuole infiggere il suo aculeo; – un grande sacco del veleno mediano, alimentato da una ghiandola acida (formata da due masse ghiandolari) e da una ghiandola alcalina, il cui secreto viene miscelato ed iniettato nella ferita al momento della puntura. Fra i componenti identificati del veleno vi sono: istamina (un aminoacido che determina reazioni allergiche), melittina (una proteina farmacologicamente attiva), fosfolipasi A (un enzima che idrolizza i fosfolipidi), ialuronidasi (un complesso enzimatico di natura proteica che depolimerizza l’acido ialuronico facilitando lo scambio dei liquidi attraverso il tessuto connettivale), apamina (un peptide basico ricco di zolfo). Al momento della puntura, al veleno si mescola il feromone di allarme (a base di acetato di amile) che attira le altre operaie sulla vittima. Un’operaia muore un paio di giorni dopo avere usato il suo aculeo, poiché tutto l’apparato del veleno ed altre parti adiacenti vengono strappate del corpo dall’ape, assicurando così un’azione protratta dell’aculeo che continua la penetrazione e ad iniettare veleno nella ferita anche dopo che l’ape si è allontanata. Quando l’ape operaia infigge il suo pungiglione nel tessuti di un vertebrato, essa non può più estrarlo a causa degli uncini di arpionamento rivolti all’indietro, come le punte della lancia di un fucile subacqueo. L’ape, allontanandosi, strappa i propri tessuti; insieme al pungiglione, allora, essa lascia anche le annesse ghiandole velenifere, muscoli, gangli nervosi e la ghiandola che emette il feromone di allarme. L’aculeo che rimane nella ferita è in grado di fungere da arma automatica, continuando da solo la penetrazione nella ferita e ad iniettare il veleno, mentre la ghiandola continua ad emettere il feromone di allarme; quest’ultimo richiama le altre operaie e le induce ad aggredire, a loro volta, la vittima.

Apparato digerente (C)
Alla faringe segue l’esofago, un lungo e sottile tubo che, dopo avere attraversato tutto il torace, entra nell’addome; qui si allarga a formare l’ingluvie o borsa melaria, notevole serbatoio dalle pareti estensibili. All’ingluvie segue il proventricolo (con cui termina l’intestino anteriore o stomodeo (27), comprendente la faringe, l’esofago con l’ingluvie, e il proventricolo) il quale si apre nell’ingluvie mediante un dispositivo valvolare costituito da 4 bande delimitanti un’apertura a X (e perciò denominato valvola a X), che favorisce il passaggio dell’alimento nello stomaco ed impedisce il rigurgito. La valvola ad X fa sì che il miele non fluisca oltre, nel tubo digerente, e venga quindi digerito; essa impedisce al nettare ed al miele di entrare nell’intestino medio quando non si rendono necessari come alimenti e di impedire al contenuto dell’intestino di riversarsi nell’ingluvie quando l’ape rigurgita il miele contenuto in essa. L’operaia, infatti, quando ha fame, apre la valvola e si somministra la sua razione. L’intestino medio, o mesenteron, detto anche stomaco, o ventricolo, o ventricolo chilifero, è tappezzato da uno strato di cellule epiteliali deputate alla secrezione dei succhi digestivi per la digestione dell’alimento e all’assorbimento delle sostanze digerite. L’intestino posteriore (16), o proctodeo, comprende l’intestino tenue e l’intestino retto. L’intestino tenue, in cui si apre l’intestino medio mediante la valvola pilorica, riceve nel suo tratto iniziale lo sbocco di circa 100 tubi malpighiani (20), lunghi e contorti, deputati all’espulsione dei cataboiliti. L’intestino retto comprende una parte prossimale, la cui parete è percorsa da cordoni longitudinali detti papille rettali ed aventi una funzione imprecisata, ed una porzione distale voluminosa, chiamata ampolla rettale, in cui vengono accumulate le feci per essere espulse attraverso l’ano (17) nei cosiddetti “voli di purificazione” (le api non evacuano all’interno dell’alveare, ma in volo).

Apparato respiratorio
Apis mellifica è specie olopneustica poiché possiede 10 paia di stigmi, 2 nella regione pleurale del II e II segmento toracico, ed 8 nelle regioni laterali degli uriti (addome).

Apparato circolatorio
Il vaso dorsale si presenta differenziato in un primo tratto addominale (cuore) (14) a fondo cieco e ricco di fibre muscolari circolari e longitudinali, ed è, a sua volta, suddiviso in camere (4-5 ventricoliti); ogni camera cardiaca è munita di un paio di aperture a valvola (ostioli) che favoriscono l’entrata dell’emolinfa dalla cavità. Il cuore si continua in avanti con un tubo che si estende fino nel capo (aorta) (7). L’aorta presenta pareti sottili e lisce, non forate, ed è spesso ramificata, soprattutto nel capo.

Sistema nervoso
Il cerebro (5) delle api occupa un volume di circa 1 mm3 e pesa circa 1 mg, cioè 1/100 del peso dell’ape. Il numero totale di neuroni nel cervello è stimato in 950 000. I principali territori del cervello dell’ape sono i lobi ottici, i lobi antennali, i corpi fungiformi e il complesso centrale.

Corredi genetici dei membri della colonia
Apis mellifera è specie aplo-diploide in quanto il maschio è aploide, derivante da uova non e la femmina è diploide, derivante da uova regolarmente fecondate. Il corredo cromosomico è 2n=32 , ed i maschi, quindi, sono portatori del solo corredo n=16 di derivazione materna. La determinazione aplo-diploide del sesso, caratteristica nelle formiche, vespe ed api ( Hymenoptera Formicoidea, Vespoidea ed Apoidea) secondo alcuni autori sarebbe particolarmente favorevole alla evoluzione sociale, e spiegherebbe perciò il suo ripetuto comparire nell’ambito di questi gruppi. Le madri e le figlie hanno in comune 1/2 dei geni, le sorelle ne hanno i 3/4; conseguentemente, le figlie risultano meglio predisposte ad aiutare la madre a prolificare ulteriormente che non a prolificare esse stesse, favorendo la nascita di individui che, per i 3/4, hanno il loro medesimo corredo genetico. Sarebbe questa una spiegazione del perché, negli Imenotteri sociali, i maschi non sono “socializzati”, mentre lo sono negli Isotteri, i cui maschi sono invece diploidi. Negli Imenotteri, infatti, i maschi e le loro figlie hanno in comune 1/2 dei geni ereditari, i maschi e le loro sorelle e fratelli solamente 1/4 dei geni. Anche l’Apis cerana ha 32 cromosomi, ed è ibridabile con Apis mellifica.
Sono stati documentati i meccanismi genetici che determinano l’indirizzo di sviluppo di una giovane ape in operaia oppure in regina. Legando una serie di immagini che descrivono quali geni sono attivi, sono stati individuati con esattezza i meccanismi con i quali gli ormoni, stimolati da fattori ambientali, nutrizionali e feromonici, fanno sì che le larve attivino i geni necessari a compiere il loro destino. Ciò rappresenta la prima visione su scala genomica di questo tipo di sviluppo. Le femmine di Apis mellifica, infatti, cominciano la loro esistenza come larve bipotenziali, sebbene ospitate in celle diverse, con la capacità cioè di formarsi nella morfologia ed anatomia di entrambe le caste, quella delle operaie o quella delle regine. (questa potenzialità è detta polifenismo). Il risultato è stato ottenuto utilizzando profili di espressione dei geni noti come “array”; con essi è stato possibile stabilire esattamente quali geni fossero attivi durante lo sviluppo delle larve. Dalle osservazioni si è potuto concludere che le larve destinate a diventare regine sembrano attivare un insieme distinto di geni legati alla casta, inclusi quelli responsabili del metabolismo e della respirazione. Nel caso delle api operaie, viceversa, continuano a esprimersi i geni tipici della fase giovanile di larva. La differenza nell’espressione dei geni porterebbe alle differenze morfo-anatomiche e funzionali. I geni regolerebbero molto da vicino il comportamento delle api, al punto che l’occupazione e il ruolo di una singola ape può essere prevista conoscendo il profilo dell’espressione genica nel suo cervello. Un complesso studio molecolare su 6878 differenti geni, replicati con 72 microarray di cDNA, che hanno catturato l’essenza dell’attività genica del cervello delle api ha rivelato che, anche se la maggior parte delle differenze nell’espressione genica era molto piccola, erano osservabili cambiamenti significativi nel 40 per cento dei geni studiati. Le microarray hanno consentito di studiare l’attività dei geni generando misure simultanee dell’RNA-messaggero, che riflette i livelli dell’attività delle proteine. Il mRNA si lega a siti specifici sulle array, consentendo la misura dell’espressione di migliaia di geni. Quindi vi è una chiara impronta molecolare nel cervello delle api associata in modo consistente con il comportamento specifico dell’individuo, e questo fatto dà una immagine del genoma come entità dinamica, coinvolta nella modulazione del comportamento nel cervello adulto (da Robinson).

Da consultare anche il seguente link : https://www.fortunadrago.it/4258/apis-mellifera-ape-mielifera/

Le Api Mellifere difendono l’alveare dalla vespa orientalis, soffocandole :

Defending the Nest Against Its Archenemy, The Cyprian Honeybee Apis Mellifera Cypria Confronting the Orient… by D.Domenico on Scribd

FB Comments

comments